skip to main content


Search for: All records

Creators/Authors contains: "Fortin, Marie‐Josée"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Fragmentation and scale

    Although habitat loss has well‐known impacts on biodiversity, the effects of habitat fragmentation remain intensely debated. It is often argued that the effects of habitat fragmentation, or the breaking apart of habitat for a given habitat amount, can be understood only at the scale of entire landscapes composed of multiple habitat patches. Yet, fragmentation also impacts the size, isolation and habitat edge for individual patches within landscapes. Addressing the problem of scale on fragmentation effects is crucial for resolving how fragmentation impacts biodiversity.

    Scaling framework

    We build upon scaling concepts in ecology to describe a framework that emphasizes three “dimensions” of scale in habitat fragmentation research: the scales of phenomena (or mechanisms), sampling and analysis. Using this framework, we identify ongoing challenges and provide guidance for advancing the science of fragmentation.

    Implications

    We show that patch‐ and landscape‐scale patterns arising from habitat fragmentation for a given amount of habitat are fundamentally related, leading to interdependencies among expected patterns arising from different scales of phenomena. Aggregation of information when increasing the grain of sampling (e.g., from patch to landscape) creates challenges owing to biases created from the modifiable areal unit problem. Consequently, we recommend that sampling strategies use the finest grain that captures potential underlying mechanisms (e.g., plot or patch). Study designs that can capture phenomena operating at multiple spatial extents offer the most promise for understanding the effects of fragmentation and its underlying mechanisms. By embracing the interrelationships among scales, we expect more rapid advances in our understanding of habitat fragmentation.

     
    more » « less
  2. null (Ed.)
  3. Abstract

    The coexistence of distinct alternative mating strategies (AMS) is often explained by mechanisms involving trade‐offs between reproductive traits and lifetime fitness; yet their relative importance remains poorly understood. Here, we used an established individual‐based, spatially explicit model to simulate bull trout (Salvelinus confluentus) in the Skagit River (Washington, USA) and investigated the influence of female mating preference, sneaker‐specific mortality, and variation in age‐at‐maturity on AMS persistence using global sensitivity analyses and boosted regression trees. We assumed that two genetically fixed AMS coexisted within the population: sneaker males (characterized by younger age‐at‐maturity, greater AMS‐specific mortality, and lower reproductive fitness) and territorial males. After 300 years, variation in relative sneaker success in the system was explained by sneaker males' reproductive fitness (72%) and, to a lesser extent, the length of their reproductive lifespan (21%) and their proportion in the initial population (8%). However, under a wide range of parameter values, our simulated scenarios predicted the extinction of territorial males or their persistence in small, declining populations. Although these results do not resolve the coexistence of AMS in salmonids, they reinforce the importance of mechanisms reducing sneaker's lifetime reproductive success in favoring AMS coexistence within salmonid populations but also limit the prediction that, without any other selective mechanisms at play, strong female preference for mating with territorial males and differences in reproductive lifespan allow the stable coexistence of distinct AMS.

     
    more » « less
  4. Bahn, Volker (Ed.)